首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   14篇
  2021年   9篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2015年   4篇
  2014年   12篇
  2013年   10篇
  2012年   15篇
  2011年   26篇
  2010年   16篇
  2009年   9篇
  2008年   6篇
  2007年   12篇
  2006年   13篇
  2005年   5篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   11篇
  1991年   10篇
  1990年   8篇
  1989年   9篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   10篇
  1980年   8篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1974年   2篇
  1973年   6篇
  1972年   7篇
  1970年   5篇
  1969年   2篇
  1964年   2篇
  1963年   2篇
  1962年   3篇
排序方式: 共有359条查询结果,搜索用时 15 毫秒
41.
The haloacid dehalogenase (HAD) superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All members possess the alpha/beta core domain, and many also possess a small cap domain. The active site of the core domain is formed by four loops (corresponding to sequence motifs 1-4), which position substrate and cofactor-binding residues as well as the catalytic groups that mediate the "core" chemistry. The cap domain is responsible for the diversification of chemistry within the family. A tight beta-turn in the helix-loop-helix motif of the cap domain contains a stringently conserved Gly (within sequence motif 5), flanked by residues whose side chains contribute to the catalytic site formed at the domain-domain interface. To define the role of the conserved Gly in the structure and function of the cap domain loop of the HAD superfamily members phosphonoacetaldehyde hydrolase and beta-phosphoglucomutase, the Gly was mutated to Pro, Val, or Ala. The catalytic activity was severely reduced in each mutant. To examine the impact of Gly substitution on loop 5 conformation, the X-ray crystal structure of the Gly50Pro phosphonoacetaldehyde hydrolase mutant was determined. The altered backbone conformation at position 50 had a dramatic effect on the spatial disposition of the side chains of neighboring residues. Lys53, the Schiff Base forming lysine, had rotated out of the catalytic site and the side chain of Leu52 had moved to fill its place. On the basis of these studies, it was concluded that the flexibility afforded by the conserved Gly is critical to the function of loop 5 and that it is a marker by which the cap domain substrate specificity loop can be identified within the amino acid sequence of HAD family members.  相似文献   
42.
Alzheimer's disease is characterized by the accumulation of amyloid-beta peptide, which is cleaved from the amyloid-beta precursor protein (APP). Reduction in levels of the potentially toxic amyloid-beta has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the regulation of the APP gene. Recent in vivo and in vitro studies have illustrated the importance of copper in Alzheimer's disease neuropathogenesis and suggested a role for APP and amyloid-beta in copper homeostasis. We hypothesized that metals and in particular copper might alter APP gene expression. To test the hypothesis, we utilized human fibroblasts overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. MNK deletion fibroblasts have high intracellular copper, whereas MNK overexpressing fibroblasts have severely depleted intracellular copper. We demonstrate that copper depletion significantly reduced APP protein levels and down-regulated APP gene expression. Furthermore, APP promoter deletion constructs identified the copper-regulatory region between -490 and +104 of the APP gene promoter in both basal MNK overexpressing cells and in copper-chelated MNK deletion cells. Overall these data support the hypothesis that copper can regulate APP expression and further support a role for APP to function in copper homeostasis. Copper-regulated APP expression may also provide a potential therapeutic target in Alzheimer's disease.  相似文献   
43.
l-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of d-glucose 6-phosphate to l-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989–998, 2004). One of the forms with a ~50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as a ~65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified ~1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive ~65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.Anirban Chatterjee and Krishnarup Ghosh Dastidar contributed equally.  相似文献   
44.
We have previously demonstrated that introgression of PcINO1 gene from Porteresia coarctata (Roxb.) Tateoka, coding for a novel salt-tolerant L-myo-inositol 1-phosphate synthase (MIPS) protein, confers salt tolerance to transgenic tobacco plants (Majee, M., Maitra, S., Dastidar, K.G., Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P. and Majumder, A.L. (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt-tolerance phenotype. J. Biol. Chem. 279, 28539-28552). In this communication we have shown that functional introgression of the PcINO1 gene confers salt-tolerance to evolutionary diverse organisms from prokaryotes to eukaryotes including crop plants albeit to a variable extent. A direct correlation between unabated increased synthesis of inositol under salinity stress by the PcINO1 gene product and salt tolerance has been demonstrated for all the systems pointing towards the universality of the application across evolutionary divergent taxa.  相似文献   
45.
Galactinol synthase (GolS), a GT8 family glycosyltransferase, synthesizes galactinol and raffinose series of oligosaccharides (RFOs). Identification and analysis of conserved domains in GTs among evolutionarily diverse taxa, structure prediction by homology modeling and determination of substrate binding pocket followed by phylogenetic analysis of GolS sequences establish presence of functional GolS predominantly in higher plants, fungi having the closest possible ancestral sequences. Evolutionary preference for a functional GolS expression in higher plants might have arisen in response to the need for galactinol and RFO synthesis to combat abiotic stress, in contrast to other organisms lacking functional GolS for such functions.  相似文献   
46.
47.
L-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS), an evolutionarily conserved enzyme-protein, catalyses the first and rate limiting step of inositol biosynthesis. Inositol and its derivatives play important roles in biological kingdom like growth regulation, membrane biogenesis, signal transduction and also acts as an osmolyte or osmoprotectant in abiotic stress tolerance. Here we report the cloning, sequencing and the characterization of the INO1 gene from Xerophyta viscosa (XINO1), a monocotyledonous resurrection plant. Nucleotide sequences of XINO1 show striking homology (70–99%) with a number of INO1 genes from plant sources particularly with the monocots. The gene is functionally identified through genetic complementation using a yeast inositol auxotrophic strain FY250. The gene is expressed in E. coli BL21, recombinant protein purified to homogeneity, biochemically characterized and compared with Oryza INO1 (RINO1) gene product. The XINO1 gene product is catalytically active in a broader range of lower temperature (between 10–40 °C) than the RINO1 gene- product. This is the first report of MIPS gene from any resurrection plant.  相似文献   
48.
49.
The responses to acute and chronic hypoxia begin with oxygen sensing, and this historical perspective is written in line with this concept. The earliest pertinent work started with studies on fermentation in yeast in the 17th century, before the discovery of oxygen. It required 200 yr to localize the oxygen sensing within the cells and another 100 yr to discover the cellular oxidation reactions. Today, the consensus is that the mitochondrial respiratory chain is in part the site of oxygen sensing. In addition, membrane-bound NAD(P)H oxidase possibly takes part in oxygen sensing. Oxygen-sensing mechanisms occur in a tissue-specific fashion. For example, the carotid body responds to hypoxia promptly by eliciting a ventilatory response, whereas erythropoietin production in response to hypoxia requires more time, involving new expression of genes. The mechanism has therefore moved from the cells to genes.  相似文献   
50.
Imaging mass spectrometry (IMS) has developed into a powerful tool allowing label-free detection of numerous biomolecules in situ. In contrast to shotgun proteomics, proteins/peptides can be detected directly from biological tissues and correlated to its morphology leading to a gain of crucial clinical information. However, direct identification of the detected molecules is currently challenging for MALDI–IMS, thereby compelling researchers to use complementary techniques and resource intensive experimental setups. Despite these strategies, sufficient information could not be extracted because of lack of an optimum data combination strategy/software. Here, we introduce a new open-source software ImShot that aims at identifying peptides obtained in MALDI–IMS. This is achieved by combining information from IMS and shotgun proteomics (LC–MS) measurements of serial sections of the same tissue. The software takes advantage of a two-group comparison to determine the search space of IMS masses after deisotoping the corresponding spectra. Ambiguity in annotations of IMS peptides is eliminated by introduction of a novel scoring system that identifies the most likely parent protein of a detected peptide in the corresponding IMS dataset. Thanks to its modular structure, the software can also handle LC–MS data separately and display interactive enrichment plots and enriched Gene Ontology terms or cellular pathways. The software has been built as a desktop application with a conveniently designed graphic user interface to provide users with a seamless experience in data analysis. ImShot can run on all the three major desktop operating systems and is freely available under Massachusetts Institute of Technology license.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号